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Abstract. We classify tuples of (not necessarily commuting) isometries that admit von
Neumann-Wold decomposition. We introduce the notion of twisted isometries for tuples of
isometries and prove the existence of orthogonal decomposition for such tuples. The former
classification is partially inspired by a result that was observed more than three decades ago
by Gaspar and Suciu. And the latter result generalizes Popovici’s orthogonal decompositions
for pairs of commuting isometries to general tuples of twisted isometries which also includes
the case of tuples of commuting isometries. Our results unify all the known orthogonal
decomposition related results in the literature.

1. Introduction

This article is concerned with orthogonal decompositions and representations of n-tuples
of (not necessarily commuting) isometries acting on Hilbert spaces. We assume throughout
that n(> 1) is a natural number and Hilbert spaces are separable and over C. The present
article can be considered as a sequel to [13], although fairly different, more general in spirit,
and almost an independent read.

The starting point for our analysis is the classical von Neumann–Wold decompositions of
isometries on Hilbert spaces. Let H be an arbitrary but fixed Hilbert space. A bounded linear
operator V on H (in short V ∈ B(H)) is said to be an isometry if ‖V f‖ = ‖f‖ for all f ∈ H,
or equivalently, V ∗V = IH. Of course, a trivial example of an isometry is unitary, whereas a
less trivial example is a shift operator. Recall that an isometry V is a shift if

SOT− lim
m→∞

V ∗m = 0.

These examples of isometries are rather typical:

Theorem 1.1 (von Neumann–Wold decomposition). Let V ∈ B(H) be an isometry. Then
H∅ := ∩∞m=0V

mH reduces V . Moreover, V |H∅ is a unitary and V |H{1} is a shift, where

H{1} := H⊥∅ =
∞⊕

m=0

V m(kerV ∗).

Therefore, V gives rise to an orthogonal direct sum of two closed subspaces (one of them is
possibly zero) with respect to which V admits a 2× 2 diagonal block matrix whose diagonal
blocks are shift and unitary operators. This simple description of isometries is one of the
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most fundamental results in linear analysis. For instance, Theorem 1.1 plays an essential role
in prediction theory [4], time series analysis [10], stochastic process [11], operator models [17],
C∗-algebras [2, 18, 20], etc.

Theorem 1.1 raises natural and important questions, such as how to determine whether
an n-tuple of isometries admits (meaningful) orthogonal direct sum decomposition, and even
if such decomposition exists, what are the representations of tuples of isometries, whether
such representations are unique or canonical, and of course, what are the invariants. The
general problem seems completely inaccessible as even the structure of commuting pairs of
isometries is notoriously complicated and largely unknown. However, this problem has been
settled for certain classes of isometries. Notably, in [15], S lociński demonstrated a completely
satisfactory theory for pairs of doubly commuting isometries. In order to be more precise, let
us clarify the meaning of orthogonal decompositions of tuples of isometries. The motivation
comes from von Neumann [19], Wold [21], S lociński [15], and Popovici [12].

Definition 1.2. An n-tuple of isometries V = (V1, . . . , Vn) acting on H admits an orthogonal
decomposition if there exist 2n closed subspaces {HA}A⊆In of H (some of these subspaces may
be trivial) such that

(1) HA reduces V for all A ⊆ In,
(2) H =

⊕
A⊆{1,...,n}HA, and

(3) Vi|HA
, i ∈ A, is a shift, and Vj|HA

, j ∈ Ac, is a unitary for all A $ {1, . . . , n}.
If, in addition, (3) holds for A = {1, . . . , n}, then we say that V admits a von Neumann–Wold
decomposition.

The meaning of condition (1) is that HA reduces Vi for all i = 1, . . . , n. At this point,
we pause to warn the reader that, in the definition of orthogonal decomposition; we do not
impose any particular condition on the reducing subspace H{1,...,n}.

S lociński proved that pairs of doubly commuting isometries admit von Neumann–Wold
decomposition. Recall that an n-tuple of isometries (V1, . . . , Vn) on H is said to be doubly
commuting if

(1.1) V ∗i Vj = VjV
∗
i (i 6= j).

In particular, if (V1, V2) is a pair of doubly commuting isometries, then there exist four closed
joint (V1, V2)-reducing subspaces HA, A ⊆ {1, 2}, such that

(1.2) H =
⊕

A⊆{1,2}

HA,

and Vi|HA
is a shift or unitary according to i ∈ A or i /∈ A, respectively. S lociński’s observation

(also see Suciu [16]) provided much of the inspiration for the subsequent development of
orthogonal decompositions of tuples of isometries. For example, see [3, 8, 14] for doubly
commuting analogue in higher dimensions and other general settings.

Now, passing to general tuples of isometries, there are two instances that are relevant to us:
Popovici [12] proved that a pair of commuting isometries admits an orthogonal decomposition,
just as in (1.2) above, but with the additional property that the fourth part (V1, V2)|H{1,2}
is a weak bi-shift. Here (and similarly for general tuples of operators) (V1, V2)|H{1,2} refers
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to the pair (V1|H{1,2} , V2|H{1,2}) on H{1,2}. Weak bi-shifts are rather complicated and encode
the information of the complexity of pairs of commuting isometries. Secondly, motivated by
Heisenberg group C∗-algebras (and also [5]), in [13] we introduced the notion of doubly twisted
isometries (see Definition 1.3 below) and prove that a tuple of doubly twisted isometries always
admits a von Neumann–Wold decomposition. Of course, doubly twisted isometries are fairly
noncommutative objects, and therefore, it is curious to observe that the existence of the von
Neumann–Wold decomposition is not completely a commutative feature. Note that doubly
twisted isometries were referred to as tuples of Un-twisted isometries in [13].

In this paper, we study orthogonal decompositions at a higher level. First, we propose a
general framework for noncommuting tuples of isometries and classify tuples admitting von
Neumann–Wold decomposition. Our classification unifies all the existing results on von Neu-
mann–Wold decompositions of tuple of isometries. Our results restricted to the commuting
tuples of operators recover the classification of Gaspar and Suciu [3]. In other words, we point
out that the idea of Gaspar and Suciu works for tuples of noncommuting isometries, which is
fairly relevant as the existence and subsequent (direct or indirect) applications of orthogonal
decomposition to C∗-algebras appear to be fruitful (although we do not pursue this direction
here). See [6, 7, 9, 20], and also see the central paper [1].

Secondly, we introduce the notion of twisted isometries and prove that an n-tuple of twisted
isometries V = (V1, . . . , Vn) admits an orthogonal decomposition with the additional property
that V |H{1,...,n} is an n-tuple of twisted weak shift. This decomposition is more general than

that of [12] as well as [13]. On one hand, our orthogonal decompositions for commuting tuples
work for n-tuples, n ≥ 2, and on the other hand, the generalizations of wandering subspaces
and weak bi-shifts for n-tuples of isometries seem to be of interest as these ideas are not
straight extensions of existing two variable theory.

Let us now turn to the technical part: Throughout the paper, when we refer to a twist on
H, we mean

(
n
2

)
commuting unitaries {Uij}1≤i<j≤n on H such that

Uji := U∗ij (1 ≤ i < j ≤ n).

We now recall the notion of doubly twisted isometries which was introduced in [13] and
referred to as Un-twisted isometry.

Definition 1.3 (Doubly twisted isometries). An n-tuple of isometries (V1, . . . , Vn) on H is
said to be doubly twisted with respect to a twist {Ust}s<t ⊆ B(H) if Vk ∈ {Ust}′s<t and

V ∗i Vj = U∗ijVjV
∗
i ,

for all i, j, k = 1, . . . , n, and i 6= j.

We often suppress the twist {Uij}i<j and simply say that V is a doubly twisted isometry.
In [13], we proved the existence of von Neumann–Wold decompositions for doubly twisted
isometries. We further note that for a doubly twisted isometry (V1, . . . , Vn), we necessarily
have that ViVj = UijVjVi for all i 6= j (cf. [13, Lemma 3.1]). This motivates:

Definition 1.4 (Twisted isometries). An n-tuple of isometries V = (V1, . . . , Vn) on H is said
to be a twisted isometry with respect to a twist {Ust}s<t ⊆ B(H) if Vk ∈ {Ust}′s<t and

ViVj = UijVjVi,
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for all i, j, k = 1, . . . , n, and i 6= j. The tuple V is said to be a twisted isometry if it is a
twisted isometry corresponding to some twist.

The particular case Uij = IH for all i < j yields tuples of commuting isometries. As
pointed out previously, in the case of pairs of commuting isometries, Popovici [12] introduced
orthogonal decompositions replacing S lociński’s doubly commuting shift part with weak bi-
shift. A pair of commuting isometries is called weak bi-shift if

V1|⋂
i≥0 kerV

∗
2 V i

1
, V2|⋂

j≥0 kerV
∗
1 V j

2
, and V1V2,

are shifts. In this context, we remark that a pair of shifts (V1, V2) is doubly commuting if and
only if V1|kerV ∗2 , V2|kerV ∗1 and V1V2 are shifts [12]. However, as we will see, for a general n-tuple,
one needs a little more care in extending the ideas of Popovici. After some preparation on
the geometric structure of twisted shifts, in Definition 5.5, we introduce the notion of twisted
weak shifts, a twisted counterpart of Popovici’s weak bi-shifts. In Theorem 6.2, we prove
that a twisted isometry admits an orthogonal decomposition with V |HIn

as a twisted weak
shift. In summary, an n-tuple of twisted isometry V = (V1, . . . , Vn) gives rise to a direct
sum decomposition just as in the case of doubly commuting isometry but the restriction of
V on HIn is (the twisted weak shift) is rather complicated and encode the information of the
complexity of tuples of twisted (or even commuting) isometries. In other words, the first 2n−1
subspaces of the direct summand are simple and enjoy similar properties to that of S lociński
decomposition, and the Popovici analogue of the 2n-th summand is rather the challenging
part.

The rest of the paper is organized as follows. In Section 2, we classify tuples of isome-
tries that admit von Neumann–Wold decomposition. The existence of von Neumann–Wold
decompositions of tuples of doubly commuting isometries then follows as a simple corollary.

Section 3 revisits von Neumann-Wold decompositions of doubly twisted isometries, which
was first observed in [13]. The present proof follows as an application of the classification of
von Neumann-Wold decompositions for general tuples of isometries. On one hand, this makes
the paper an independent read and easy reference for the remaining results. On the other
hand, this connects the recent developments with the techniques which were observed more
than three decades ago by Gaspar and Suciu [3].

Section 4 sets the stage for wandering subspaces for twisted isometries. This section is
central to the theory of orthogonal decomposition of twisted isometries.

In Section 5, we introduce the notion of twisted weak shifts, the twisted counterpart of
Popovici’s weak bi-shifts. The idea of twisted weak shifts comes from a classification of
twisted shifts (see Proposition 5.4). Section 6 deals with orthogonal decompositions of twisted
isometries.

2. Characterizations of von Neumann-Wold Decompositions

In this section, we work in the category of noncommuting tuples of isometries. More
specifically, we classify tuples of isometries that admit von Neumann–Wold decomposition.
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Let V ∈ B(H) be an isometry. To simplify the notation, we set

(2.1) HV,u =
⋂

m∈Z+

V mH, and HV,s =
⊕
m∈Z+

V m(kerV ∗),

the unitary part and the shift part, respectively, of V (see Theorem 1.1). Therefore, H =
HV,s ⊕HV,u, where V |HV,s

is a shift and V |HV,u
is a unitary.

The following notation will be convenient throughout this paper:

In = {1, . . . , n}.
Let V = (V1, . . . , Vn) be an n-tuple of isometries acting on H. Recall from Definition 1.2 that
V admits a von Neumann–Wold decomposition if there exist 2n closed subspaces {HA}A⊆In
of H such that H =

⊕
A⊆InHA, and

(1) HA reduces V for all A ⊆ In, and
(2) Vi|HA

, i ∈ A, is a shift, and Vj|HA
, j ∈ Ac, is a unitary for all A ⊆ In.

We are now ready for the characterization of tuples of isometries admitting von Neumann-
Wold decomposition.

Theorem 2.1. Let V = (V1, . . . , Vn) be an n-tuple of isometries on H. The following are
equivalent:

(1) V admits a von Neumann-Wold decomposition.
(2) HVi,u reduces Vj for all i, j ∈ In.
(3) HVi,s reduces Vj for all i, j ∈ In.

Proof. Evidently, it is enough to prove that (1) and (2) are equivalent. Let V admits a
von Neumann-Wold decomposition H =

⊕
A⊆InHA. Fix i ∈ In. By the definition of von

Neumann-Wold decomposition and Theorem 1.1, we have

HVi,s =
⊕
B⊆In
i∈B

HB, and HVi,u =
⊕
B⊆In
i/∈B

HB.

Since HA reduces Vj for all j ∈ In and A ⊆ In, it follows that HVi,u reduces Vj for all i, j ∈ In.
For the converse, suppose HVi,u (and hence HVi,s too) reduces Vj for all i, j ∈ In. For each
A ⊆ In, define

(2.2) HA =
[⋂
i∈A

HVi,s

]⋂[ ⋂
j∈Ac

HVj ,u

]
.

Clearly,HA reduces Vi for all i ∈ In and A ⊆ In. It then remains to show thatH =
⊕

A⊆InHA.
Since

⊕
A⊆InHA ⊆ H, it is enough to prove that

H = HV1,s ⊕HV1,u ⊆
⊕
A⊆In

HA.

For this, we need a general observation: Given A ⊆ Im $ In and j /∈ Im, we denote by Ã the
set A itself but as a subset of Im ∪ {j}. We claim that

HA ⊆ HÃ∪{j} ⊕HÃ.
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Note that HA reduces Vj, and also kerV ∗j |HA
= kerV ∗j ∩HA. By applying the von Neumann-

Wold Decomposition to the isometry Vj|HA
, we have

HA =
[ ⊕
kj∈Z+

V
kj
j (kerV ∗j ∩HA)

]⊕[⋂
Vj

kj∈Z+

kj
HA

]
.

For each kj ∈ Z+, it is obvious that

V
kj
j (kerV ∗j ∩HA) ⊆ V

kj
j HA ⊆ HA,

and

V
kj
j (kerV ∗j ∩HA) ⊆ V

kj
j (kerV ∗j ).

The latter inclusion yields⊕
kj∈Z+

V
kj
j (kerV ∗j ∩HA) ⊆

⊕
kj∈Z+

V
kj
j (kerV ∗j ) = HVj,s

,

which along with the former inclusion gives⊕
kj∈Z+

V
kj
j (kerV ∗j ∩HA) ⊆ HA ∩HVj ,s = HÃ∪{j}.

We also have ⋂
kj∈Z+

V
kj
j HA ⊆ HA

⋂( ⋂
kj∈Z+

V
kj
j H

)
= HÃ.

This implies HA ⊆ HÃ∪{j} ⊕ HÃ and proves the claim. Applying this to A ⊆ Im $ In and

j, k /∈ Im, we obtain

HA ⊆ HÃ∪{j}∪{k} ⊕HÃ∪{j} ⊕HÃ∪{k} ⊕HÃ,

where Ã = A but a subset of Im ∪ {j, k}. Consider the von-Neumann Wold decomposition
for V1 on H:

H = HV1,s⊕HV1,u = H{1} ⊕H∅,
where index sets {1} and ∅ on the right side are subsets of I = {1}. Applying the above
recipe repeatedly to H{1} one sees that

H{1} ⊆ ⊕
A⊆J
H ˜{1}∪A,

where J = {2, . . . , n}, and ˜{1} = {1} but a subset of In. Similarly, H∅ ⊆
⊕
A⊆J
HA. Then

H = H{1} ⊕H∅
⊆
(
⊕

A⊆J
H ˜{1}∪A

)
⊕
(
⊕

A⊆J
HA

)
=
⊕
A⊆In

HA,

completes the proof of the theorem. �
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In the case of commuting tuples of isometries, the above result was stated by Gaspar and
Suciu (see [3, Theorem 2]). The proof in [3] was mentioned only in the case of n = 3. It
is very curious to observe that the commutative theme of Gaspar and Suciu also works for
noncommuting tuples of isometries.

Two particular cases of the above classification are worthy of special attention: doubly
commuting tuples of isometries (also see [3]) and doubly twisted isometries. Of course, the
latter notion is more general than the former. We conclude this section with the case of
doubly commuting isometries.

Before proceeding further, it is useful to make some standard observations about isometries.
Given a closed subspace S ⊆ H, denote by PS the orthogonal projection of H onto S.

Lemma 2.2. Let V ∈ B(H) be an isometry. Then

(1) PHV,s
= SOT−

∑
m∈Z+

V mPkerV ∗V
∗m.

(2) PHV,u
= SOT− limm→∞ V

mV ∗m.

Proof. The proof follows from representations of unitary and shift parts of isometries as in
(2.1). �

Let V = (V1, . . . , Vn) be a tuple of doubly commuting isometries on H (see (1.1)). By
Lemma 2.2, it follows that

PHVi,u
= SOT− lim

m→∞
V m
i V ∗mi (i ∈ In).

In particular, if h ∈ H and i ∈ In, then h ∈ HVi,u if and only if PHVi,u
h = h, whereas h ∈ HVi,s

if and only if PHVi,u
h = 0. Clearly, HVi,u reduces Vi for all i ∈ In. Moreover, for all i 6= j in

In, we have
(V m

i V ∗mi )Vj = Vj(V
m
i V ∗mi )

that is
PHVi,u

Vj = VjPHVi,u
.

This implies immediately that HVi,u reduces Vj for all i, j ∈ In. Theorem 2.1 then implies
that V admits von Neumann-Wold decomposition. This assertion was observed earlier in [14].
The assertion also follows from Corollary 3.2.

It is now an interesting problem to represent the direct summands HA of the von Neumann-
Wold decomposition as described in (2.2). The answer is not clear in this generality and even
it is unclear what conditions we would need to impose to get concrete representations of HA.
In the following section, we will discuss this in the setting of doubly twisted isometries.

3. Doubly twisted isometries

In this section, we deal with doubly twisted isometries (see Definition 1.3). The goal here
is to recover, as an application of Theorem 2.1, the existence of the von Neumann-Wold
decomposition for doubly twisted isometries along with representations of HA’s as described
in (2.2). Needless to say, the main results of this section are not new (cf. [13, Theorem 3.6]),
but the techniques involved are more algebraic. We believe that the present approach has
more potential in other general frameworks.
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Let (V1, . . . , Vn) be a doubly twisted isometry on H. We know that

(3.1) V ∗i Vj = U∗ijVjV
∗
i , and ViVj = UijVjVi,

for all i 6= j and i, j ∈ In. For each i 6= j, we then have

(3.2) Uij = V ∗i V
∗
j ViVj,

and

Vi(VjV
∗
j ) = UijVjViV

∗
j = UijVj(U

∗
ijV
∗
j Vi) = (VjV

∗
j )Vi.

In the above, we have used the fact that Vp ∈ {Ust}′s<t for all p ∈ In, and U∗st = Uts, t > s.
Therefore

(3.3) Vi(VjV
∗
j ) = (VjV

∗
j )Vi (i 6= j).

Let N∅ = H, and let

NA =
⋂
i∈A

kerV ∗i (A 6= ∅).

Also set Ni = N{i} = kerV ∗i for all i ∈ In. In view of the above observation, we have

(3.4) (ViV
∗
i )(VjV

∗
j ) = (VjV

∗
j )(ViV

∗
i ) (i 6= j).

Since I − ViV
∗
i = PNi

for all i ∈ In, it follows that {PNi
}i∈In is a family of commuting

orthogonal projections. This implies

PNA
=
∏
i∈A

PNi
(A ⊆ In, A 6= ∅).

Moreover, (3.3) implies that NA reduces Vj for all j /∈ A. Since Vi ∈ {Ust}′s<t, it follows that
(I − ViV ∗i )Ust = Ust(I − ViV ∗i ) for all i ∈ In and hence, by the factorization of PNA

above, we
have that NA reduces Ust and UstNA = NA for all s 6= t and A ⊆ In. We summarize all these
observations in the following lemma (also see Lemma 3.3 and Lemma 3.5 in [13]).

Lemma 3.1. Let (V1, . . . , Vn) be a doubly twisted isometry, and let A ⊆ In. Then:

(1) {PNi
}i∈In is a family of commuting orthogonal projections.

(2) PNA
=
∏

i∈A PNi
, A 6= ∅.

(3) NA reduces Vj for all j /∈ A, and A 6= In.
(4) NA reduces Ust and UstNA = NA for all s 6= t.

We are now ready for the second application of Theorem 2.1:

Corollary 3.2. Doubly twisted isometries admit von Neumann-Wold decomposition.

Proof. Let (V1, . . . , Vn) be a doubly twisted isometry on H. Fix i, j ∈ In, and suppose i 6= j.
Since ViV

m
j = V m

j ViU
m
ij for all m ∈ Z+, and UijH = H and ViH ⊆ H, it follows that

ViHVj ,u = Vi(
⋂

m∈Z+

V m
j H) =

⋂
m∈Z+

V m
j ViU

m
ijH ⊆

⋂
m∈Z+

V m
j H

that is, ViHVj ,u ⊆ HVj ,u. Similarly, V ∗i HVj ,u ⊆ HVj ,u. This proves that HVj ,u reduces Vi.
Finally, the fact that HVi,u reduces Vi follows from the von Neumann-Wold decomposition of
Vi. Thus the assertion follows from Theorem 2.1. �
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Now we turn to the problem of representations of the direct summands of the von Neumann-
Wold decomposition. First, observe that Lemma 3.1 and part (2) of Lemma 2.2 implies:

Lemma 3.3. Let (V1, . . . , Vn) be a doubly twisted isometry, and let A $ In be a nonempty
subset. Then PHVj,s

, PHVj,u
∈ {PNA

}′ for all j ∈ Ac.

We then have the commutativity of orthogonal projections:

Lemma 3.4. Let (V1, . . . , Vn) be a doubly twisted isometry. Then {PHVi
,s, PHVj

,u}i,j∈In is a

family of commuting orthogonal projections.

Proof. Clearly, PHVi,s
PHVi,u

= 0 = PHVi,u
PHVi,s

for all i ∈ In. Therefore, assume that i 6= j.
Lemma 2.2 and Lemma 3.3 then imply

PHVi,s
PHVj,s

=
( ∑

m∈Z+

V m
i PNi

V ∗mi

)
PHVj,s

= PHVj,s

( ∑
m∈Z+

V m
i PNi

V ∗mi

)
= PHVj,s

PHVi,s
.

In the above, we have also used the fact that HVj ,s reduces Vi. A similar computation then
yields PHVi,s

PHVj,u
= PHVj,u

PHVi,s
and PHVi,u

PHVj,u
= PHVj,u

PHVi,u
, and completes the proof of

the lemma. �

Similar technique applies to the splitting of product of isometries, co-isometries, and or-
thogonal projections. For each m ≥ 1, denote by k = (k1, . . . , km) the multi-index in Zm

+ .

Lemma 3.5. Let (V1, . . . , Vn) be a doubly twisted isometry, A ⊆ In, A 6= ∅, and let k ∈ Z|A|+ .
Then ∏

i∈A

(
V ki
i PNi

V ∗kii

)
=
(∏

i∈A

V ki
i

)
PNA

(∏
i∈A

V ki
i

)∗
.

Proof. Let i, j ∈ In, and suppose i 6= j. Note that (see (3.1))

V ∗pi V q
j = U∗pqij V q

j V
∗p
i (p, q ∈ Z+).

Since Uij ∈ {Vi, Vj}′ and Ns = kerV ∗s reduces Vt for all t 6= s (see part (3) of Lemma 3.1), for
each ki, kj ∈ Z+, it follows that

(V ki
i PNi

V ∗kii )(V
kj
j PNj

V
∗kj
j ) = (U

∗kikj
ij )V ki

i PNi
V

kj
j V ∗kii PNj

V
∗kj
j

= (U
∗kikj
ij )V ki

i V
kj
j PNi

PNj
V ∗kii V

∗kj
j

= (U
∗kikj
ij )(V ki

i V
kj
j )PN{i,j}(V

ki
i V

kj
j )∗(U

kikj
ij )

= (V ki
i V

kj
j )PN{i,j}(V

ki
i V

kj
j )∗.

This verifies the conclusion for A = {i, j}. The lemma now follows by induction. �

We set the following convention. Given an n-tuple of bounded linear operators T =
(T1, . . . , Tn) on H and k = (k1, . . . , kn) ∈ Zn

+, we define T k by

T k := T k1
1 · · ·T kn

n .

Now we discuss the unitary part of doubly twisted isometries:
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Lemma 3.6. Let V = (V1, . . . , Vn) be a doubly twisted isometry and let S reduces V . Then⋂
k∈Zn

+

V kS =
⋂
i∈In

⋂
ki∈Z+

V ki
i S.

Proof. It suffices to prove the assertion for n = 2; the general case then easily follows by
induction. Let V = (V1, V2) be a doubly twisted isometry and let U be the corresponding
twist. By (3.1) and (3.2), we know that V1V2 = UV2V1 and U = V ∗1 V

∗
2 V1V2. In particular, S

reduces U . It is now easy to see that⋂
k∈Z2

+

V kS ⊆
⋂
i∈I2

⋂
ki∈Z+

V ki
i S.

For the reverse inclusion, let y ∈ (∩k1∈Z+V
k1
1 S) ∩ (∩k2∈Z+V

k2
2 S). For each k1, k2 ∈ Z+, there

exist xk1 and xk2 in S such that y = V k1
1 xk1 = V k2

2 xk2 . Then

xk1 = V ∗k11 V k2
2 xk2 = V k2

2 (V ∗k11 U∗k1k2xk2) = V k2
2 x,

where x = V ∗k11 U∗k1k2xk2 ∈ S. Therefore, y = V k1
1 V k2

2 x ∈ ∩k∈Z2
+
V kS, which completes the

proof of the lemma. �

The following conventions will be in effect throughout: For an n-tuple of bounded linear
operators T = (T1, . . . , Tn) on H and A = {m1 < · · · < mp} ⊆ In, we define

TA = (Tm1 , . . . , Tmp),

and, for each k = (k1, . . . , kp) ∈ Zp
+, define

(3.5) T k
A := T k1

m1
· · ·T kp

mp
.

Now we are ready to compute the closed subspaces HA in (2.2).

Theorem 3.7. Let V = (V1, . . . , Vn) be a doubly twisted isometry. Then V admits a von
Neumann-Wold decomposition H =

⊕
A⊆InHA, where

HA =
⊕

k∈Z|A|+

V k
A

( ⋂
l∈Zn−|A|

+

V l
In\ANA

)
(A ⊆ In).

Proof. By Corollary 3.2, we already know the existence of the von Neumann-Wold decompo-
sition. We also know that (see (2.2) in the proof of Theorem 2.1)

HA =
(⋂

i∈A

HVi,s

)⋂( ⋂
j∈Ac

HVj ,u

)
(A ⊆ In).
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Fix A ⊆ In, and suppose A 6= ∅. Lemma 3.4 implies HA =
(∏

i∈A PHVi,s

)(∏
j∈Ac PHVj,u

)
H.

We compute ∏
i∈A

PHVi,s
=
∏
i∈A

( ∑
ki∈Z+

V ki
i PNi

V ∗kii

)
=
∑

k∈Z|A|+

(∏
i∈A

V ki
i PNi

V ∗kii

)
=
∑

k∈Z|A|+

(∏
i∈A

V ki
i

)
PNA

(∏
i∈A

V ki
i

)∗
,

where the last equality follows from Lemma 3.5. If A = In, then the above equality gives
desired representation of HIn . Suppose A ( In. By Lemma 3.3, we know that PHVj,u

PNA
=

PNA
PHVj,u

for all j ∈ Ac. Also, since PHVj,u
Vi = ViPHVj,u

for all i ∈ A and j ∈ Ac, we have(∏
i∈A

PHVi,s

)( ∏
j∈Ac

PHVj,u

)
=
( ∑

k∈Z|A|+

(∏
i∈A

V ki
i

)
PNA

(∏
i∈A

V ki
i

)∗)( ∏
j∈Ac

PHVj,u

)
=
∑

k∈Z|A|+

(∏
i∈A

V ki
i

)( ∏
j∈Ac

PHVj,u

)
PNA

(∏
i∈A

V ki
i

)∗
.

Consequently

HA = ran
( ∑

k∈Z|A|+

(∏
i∈A

V ki
i

)( ∏
j∈Ac

PHVj,u

)
PNA

)
.

Finally, note that

ran
(( ∏

j∈Ac

PHVj,u

)
PNA

)
=
⋂
j∈Ac

PHVj,u
NA =

⋂
j∈Ac

( ⋂
kj∈Z+

V
kj
j (NA)

)
=

⋂
l∈Zn−|A|

+

V l
In\A(NA),

where the last equality follows from Lemma 3.6. Therefore

HA =
⊕

k∈Z|A|+

V k
A

( ⋂
l∈Zn−|A|

+

V l
In\A(NA)

)
.

If A = ∅, then NA = H, and hence using above equality we get

H∅ =
⋂
l∈Zn

+

V l
InH,

which completes the proof of the theorem. �

As already pointed out, this was first observed in [13]. The present proof is an application
of Theorem 2.1 and is conceptually different. Moreover, the techniques and ideas used in this
section will be useful in describing the structure of twisted isometries.
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4. Wandering subspaces

Let V = (V1, . . . , Vn) be a tuple of isometries on H, and let S be a closed subspace of H.
We say that S satisfies wandering property (or S is a wandering subspace) for V if

V kS ⊥ V lS,

for all k 6= l in Zn
+. If, in addition

H =
⊕
k∈Zn

+

V kS,

then we say that S is a generating wandering subspace for V . Generating wandering subspaces
play a vital role in representing single isometries. Indeed, if n = 1, then kerV ∗ is the
generating wandering subspace which represents the pure part of an isometry V (see Theorem
1.1). Wandering subspaces for doubly twisted isometries are also explicit and play important
role in the structure of such tuples (compare Theorem 3.7 with the identity (5.2)). However,
as we will see in this section, the analog of wandering subspaces for twisted isometries requires
some more care. We begin with the following definition (recall (3.5)).

Definition 4.1. Let V = (V1, . . . , Vn) be a tuple of isometries on H. The weak A-wandering
subspace for V is defined by

EA :=
⋂
i∈A

⋂
B⊆{i}c

⋂
k∈Z|B|+

(
kerV ∗i V

k
B

)
,

whenever A ⊆ In and A 6= ∅, whereas E∅ := H.

In the above, {i}c := In \{i}. First, we clarify that weak A-wandering subspaces of twisted
isometries indeed satisfy wandering property.

Lemma 4.2. Let V = (V1, . . . , Vn) be a twisted isometry. Then EA satisfies the wandering
property for V for all A ⊆ In, A 6= ∅.

Proof. Let |A| = p and suppose A := {m1 < · · · < mp}. Let k = (k1, . . . , kp) and l =
(l1, . . . , lp) be in Zp

+. Suppose k 6= l, and let j be the minimum of all i ∈ {1, · · · , p} such that
ki 6= li. Assume, without loss of generality, that kj < lj. For x, y ∈ EA, we have

〈V k
Ax, V

l
Ay〉 = 〈V kj

mj
· · ·V kp

mp
x, V lj

mj
· · ·V lp

mp
y〉

= 〈V ∗mj
(V kj+1

mj+1
· · ·V kp

mp
)x, V lj−kj−1

mj
· · ·V lp

mp
y〉.

Note that (see Definition 4.1)

x ∈ EA =
⋂
i∈A

⋂
B⊆{i}c

⋂
k∈Z|B|+

(
kerV ∗i V

k
B

)
.

Therefore, if we set B := {mj+1, . . . ,mp}, then B ⊆ {mj}c, and consequently

x ∈ ker
(
V ∗mj

V k̃
B

)
,
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where k̃ = (kj+1, . . . kp) ∈ Z|B|+ . Consequently, V ∗mj
V k̃
Bx = 0, which implies

〈V k
Ax, V

l
Ay〉 = 〈V ∗mj

V k̃
Bx, V

lj−kj−1
mj

· · ·V lp
mp
y〉

= 0,

and completes the proof of the lemma. �

Before we get into the working class subspaces satisfying wandering property, we prove
some lemmas. In the remaining part of this section we assume that V = (V1, . . . , Vn) is a
twisted isometry corresponding to a twist {Uij}i<j. The following simple observation will turn
out to be an indispensable tool in what follows.

Lemma 4.3. For each k ∈ Zn
+ and i ∈ In, there exists a monomial ηi,k ∈ C[z1, . . . , zn] such

that
ViV

k = V kViηi,k(U).

Proof. By the definition of twisted isometries, we have ViVj = UijVjVi for all i 6= j. Therefore

ViV
k = (Uk1

i1 · · ·U
ki−1

i(i−1))(U
ki+1

i(i+1) · · ·U
kn
in )V kVi

= ηi,k(U)V kVi

= V kViηi,k(U),

where
ηi,k = zk11 · · · z

ki−1

i−1 z
ki+1

i+1 · · · zknn ∈ C[z1, . . . , zn],

and ηi,k(U) refers to the polynomial functional calculus. �

In the above, the polynomial functional calculus ηi,k(U) is given by

ηi,k(U) = Uk1
i1 · · ·U

ki−1

i(i−1)U
ki+1

i(i+1) · · ·U
kn
in .

We will adopt this convention throughout the remainder of this paper. Moreover, if i and k
are clear from the context, then we simply denote a monomial in U by η(U) instead of ηi,k(U).

Before proceeding, we observe the useful identity

(4.1) Uij = V ∗i V
∗
j ViVj (i 6= j).

This follows from the definition of twisted isometries that ViVj = UijVjVi and the fact that
Vi ∈ {Ust}′s<t for all i 6= j.

Lemma 4.4. UijEA = EA and UijNA = NA for all i 6= j and A ⊆ In.

Proof. If A = ∅, then E∅ = H = N∅, and the desired equality is clear. Suppose A 6= ∅. By
assumption, we have

(4.2) UijVk = VkUij, and UijV
∗
k = V ∗k Uij,

for all i, j, k ∈ In and i 6= j. Fix A ⊆ In, i 6= j, and suppose x ∈ EA. We know that

x ∈ kerV ∗t V
k
B for all t ∈ A, B ⊆ {t}c and k ∈ Z|B|+ . Therefore,

V ∗t V
k
BUijx = UijV

∗
t V

k
Bx = 0,
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and similarly, V ∗t V
k
BU
∗
ijx = 0. This implies that Uij reduces EA. Since Uij is unitary, it follows

that UijEA = EA. The second equality UijNA = NA follows from (4.2). �

Since ViVj = UijVjVi = VjViUij for all i 6= j, the above lemma implies that:

Lemma 4.5. ViVjEA = VjViEA for all A ⊆ In.

We also have the following invariance property:

Lemma 4.6. VjEA ⊆ EA for all A $ In and j ∈ Ac.

Proof. We know that E∅ = H. Then obviously VjE∅ ⊆ E∅. Suppose A 6= ∅. Let x ∈ EA.

Since j ∈ Ac, for any B ⊆ {i}c, k ∈ Z|B|+ and i ∈ A, we have, V ∗i V
k
BVj(x) = 0. This implies

VjEA ⊆ EA and completes the proof of the lemma. �

Although the weakly wandering subspace EA satisfies the wandering property, for the sake of
appropriate orthogonal decompositions of twisted isometries, we require to identify a suitable
subspace of EA:

Definition 4.7. Let V = (V1, . . . , Vn) be a twisted isometry. For each A ⊆ In, the A-
wandering subspace for V is defined by

WA =
⋂

l∈Zn−|A|
+

V l
In\AEA.

Clearly, WA ⊆ EA for all A ⊆ In. In particular, we have V k
AWA ⊥ V l

AWA for all k 6= l in

Z|A|+ , A 6= ∅, and A ⊆ In. Therefore, the orthogonal sum

(4.3) HV,A :=
⊕

k∈Z|A|+

V k
AWA,

is well-defined for all A 6= ∅. We also set HV,∅ :=W∅, that is

HV,∅ :=W∅ =
⋂

k∈Zn
+

V k
InH.

By the commutativity property of Vk’s and Uij’s as in (4.2) and Lemma 4.4, it follows that

(4.4) UijHV,A = HV,A,

for all i 6= j and A ⊆ In. Moreover, we have:

Lemma 4.8. Let V = (V1, . . . , Vn) be a twisted isometry. Then:

(1) VjWA =WA for all A $ In and j ∈ In \ A.
(2) UstWA =WA for all s < t and A ⊆ In.
(3) VjHV,A = HV,A for all A $ In and j ∈ In \ A.
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Proof. Fix A $ In and j ∈ In \A. Clearly, WA ⊆ VjWA. For the nontrivial inclusion, observe
that by Lemma 4.3, there exists a monomial η1 ∈ C[z1, . . . , zn−|A|] such that

Vj

( ⋂
l∈Zn−|A|

+

V l
In\AEA

)
=

⋂
l∈Zn−|A|

+

V l
In\AVjη1(U)EA

=
⋂

l∈Zn−|A|
+

V l
In\AVjEA

⊆
⋂

l∈Zn−|A|
+

V l
In\AEA.

where the last equality and the inclusion follow from Lemma 4.4 and Lemma 4.6, respectively.
Hence VjWA =WA, which completes the proof of part (1). Part (2) follows from the Lemma
4.4 along with the fact that Uij commutes with Vk for all i 6= j and k.
Now we prove that VjHV,A = HV,A, for all A $ In and j ∈ Ac. Fix A $ In and j ∈ Ac. Note

that for each k ∈ Z|A|+ , there exists a monomial ηk such that VjV
k
A = V k

AVjηk(U). In view of
ηk(U)WA =WA, we compute

VjHV,A = Vj

( ⊕
k∈Z|A|+

V k
AWA

)
=
( ⊕
k∈Z|A|+

V k
AVjηk(U)WA

)
=
( ⊕
k∈Z|A|+

V k
AVjWA

)
.

Since VjWA =WA, by part (1), it follows that VjHV,A = HV,A. �

Wandering subspaces will play a key role in the remaining part of the paper.

5. Twisted weak shifts

In this section, we will introduce the notion of twisted weak shifts. This will appear to be
the right generalization of Popovici’s weak bi-shifts for pairs of commuting isometries. We
begin with the definition of twisted shifts which was introduced in [13].

Definition 5.1. A twisted shift is an n-tuple of doubly twisted isometry (V1, . . . , Vn) such
that Vi is a shift for all i = 1, . . . , n.

Suppose V = (V1, . . . , Vn) is a doubly twisted isometry on H. In view of Theorem 3.7, V
admits a von Neumann-Wold decomposition H =

⊕
A⊆InHA, where

HA =
⊕

k∈Z|A|+

V k
A

( ⋂
l∈Zn−|A|

+

V l
In\ANA

)
(A ⊆ In).
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Therefore, V is a twisted shift if and only if HA = {0} for all A 6= In. Equivalently, H admits
the following decomposition

H =
⊕
k∈Zn

+

V k(N ),

where N =: NIn =
⋂

i∈In kerV ∗i .
The typical example of twisted shifts is built up from commuting unitary operators and

shifts on the Hardy space H2(Dn). Recall that H2(Dn) is the Hilbert space of all square
summable analytic functions on the unit polydisc Dn. Given a Hilbert space E , we denote by
H2
E(Dn) the E-valued Hardy space over Dn. Then (Mz1 , . . . ,Mzn) defines a doubly commuting

shifts on H2
E(Dn), where Mzif = zif for all f ∈ H2

E(Dn). It is often convenient to identify
H2
E(Dn) with H2(Dn)⊗ E . We need a definition:

Definition 5.2. Let E be a Hilbert space, U ∈ B(E) be a unitary, and let j ∈ {1, . . . , n}.
The j-th diagonal operator with symbol U is the unitary operator Dj[U ] on H2

E(Dn) defined
by

Dj[U ](zkη) = zk(Ukjη) (k ∈ Zn
+, η ∈ E).

Let E be a Hilbert space, and let {Uij}i<j be a twist on E . Then {IH2(Dn) ⊗ Uij}i<j defines
a twist on H2

E(Dn) (or on H2(Dn)⊗ E , to be more specific). Define

Vi =

{
Mz1 if i = 1

Mzi

(
D1[Ui1]D2[Ui2] · · ·Di−1[Uii−1]

)
otherwise.

A routine computation (cf. [13]) then reveals that (V1, . . . , Vn) is a doubly twisted shift on
H2
E(Dn). This is essentially a model example of twisted shifts. Observe that, since a twist is

made by a family of commuting unitaries and a twisted shift is made of a twist, it is immediate
that the class of doubly twisted isometries is larger than the doubly non-commuting isometries
[5].

In order to formulate the notion of twisted weak shifts, we need a characterization of twisted
shifts. Suppose V = (V1, . . . , Vn) is a twisted isometry. Clearly, Πi∈InVi is an isometry. The
following lemma, in particular, explains the unitary part of Πi∈InVi in terms of H∅ as in
Definition 4.7.

Lemma 5.3. Let V = (V1, . . . , Vn) be a twisted isometry on H, and let S ⊆ H reduces V .
Then ⋂

m∈Z+

(V1 · · ·V2)mS =
⋂

k∈Zn
+

V kS.

Proof. We prove it only for n = 2 as the remaining part can easily be proven by induc-
tion for any positive integer n ≥ 2. Suppose V = (V1, V2). Evidently

⋂
m∈Z+

(V1V2)
mS ⊇⋂

k1,k2∈Z+
V k1
1 V k2

2 S. For the reverse inclusion, suppose x ∈
⋂

m∈Z+
(V1V2)

mS. Let U be the

corresponding twist for (V1, V2). Since S reduce V1 and V2, it follows that S also reduces U
(see (4.1)). Let k1, k2 ∈ Z+ and suppose k1 < k2. There exists h ∈ S (depending on k2) such
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that x = (V1V2)
k2h. By Lemma 4.3 again, there exist monomials η1 and η2 such that

x = (V1V2)
k1(V1V2)

k2−k1h

= V k1
1 V k1

2 (V1V2)
k2−k1(η1(U

∗)h)

= V k1
1 V k2

2 (V k2−k1
1 η2(U)η1(U

∗)h).

Since η2(U)η1(U
∗)S ⊆ S, we have x ∈ V k1

1 V k2
2 S, which proves the reverse inclusion. �

We are now ready for the characterization of twisted shifts.

Proposition 5.4. Let V = (V1, . . . , Vn) be a doubly twisted isometry on H. Then V is a
twisted shift if and only if Vi|N{i}c and VjVk are shifts for all i, j, k ∈ In and j 6= k.

Proof. If V is a twisted shift, then, by the fact that N{i}c reduces Vi (see Lemma 3.1), it
follows that Vi|N{i}c is a shift. Moreover, by Lemma 5.3, we have⋂

m∈Z+

(VjVk)mH =
⋂

mj ,mk∈Z+

(V
mj

j V mk
k )H ⊆

⋂
mj∈Z+

V
mj

j H = {0},

as Vj is a shift. Therefore, VjVk is a shift for all j 6= k. For the converse, suppose Vi|N{i}c
and VjVk are shifts for all j 6= k and i ∈ In. Our goal is to prove that Vi is a shift, that is,⋂
ki≥0

V ki
i H = 0 for all i ∈ In. To this end, fix i ∈ In. Note that

Ṽ = (V1, . . . , Vi−1, Vi+1, . . . , Vn),

is an (n− 1)-tuple of doubly twisted isometry with respect to the twist

Ũ = {Upq : p < q and p, q 6= i}.
Therefore, by Theorem 3.7, Ṽ admits von Neumann-Wold decomposition H =

⊕
A⊆{i}cHA,

where
HA =

⊕
k∈Z|A|+

V k
A

( ⋂
l∈Zn−1−|A|

+

V l
J\A(NA)

)
(A ⊆ {i}c),

and J = In \ {i}. Fix A ⊆ {i}c and ki ∈ Z+. Suppose m = n− 1− |A|. By Lemma 4.3, for

each k ∈ Z|A|+ , there exists a monomial ηk such that V ki
i V k

A = V k
AV

ki
i ηk(U). We compute

V ki
i HA = V ki

i

( ⊕
k∈Z|A|+

V k
A

( ⋂
l∈Zm

+

V l
J\A(NA)

))
=
⊕

k∈Z|A|+

V k
AV

ki
i ηk(U)

( ⋂
l∈Zm

+

V l
J\A(NA)

)
=
⊕

k∈Z|A|+

V k
AV

ki
i

( ⋂
l∈Zm

+

V l
J\A(NA)

)
=
⊕

k∈Z|A|+

V k
A

( ⋂
l∈Zm

+

V ki
i V l

J\A(NA)
)
,
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where the last but one equality follows from the fact that

ηk(U)
( ⋂

l∈Zm
+

V l
J\A(NA)

)
=
⋂
l∈Zm

+

V l
J\A(NA).

Therefore ⋂
ki∈Z+

V ki
i HA =

⊕
k∈Z|A|+

V k
A

( ⋂
ki∈Z+,l∈Zm

+

V ki
i V l

J\A(NA)
)
.

If A & J = {i}c, there exists j ∈ {i}c \ A, such that

(5.1)
⋂

ki∈Z+,l∈Zm
+

V ki
i V l

J\A(NA) =
⋂

ki,lj∈Z+,l′∈Zm−1
+

V ki
i V

lj
j

(
V l′

J\A∪{j}(NA)
)
,

where l = (l1, · · · , lm) ∈ Zm
+ . Applying Lemma 5.3, we have⋂

ki,lj∈Z+

V ki
i V

lj
j

(
V l′

J\A∪{j}NA

)
⊆

⋂
ki,lj∈Z+

V ki
i V

lj
j H =

⋂
m∈Z+

(ViVj)
mH = {0},

for all l′ ∈ Zm−1
+ . Then (5.1) implies⋂

ki∈Z+,l∈Zm
+

V ki
i V l

J\A(NA) = {0}.

Then the equality preceding (5.1) yields
⋂

i∈Z+
V ki
i HA = {0} for all A & {i}c. Therefore⋂

ki∈Z+

V ki
i H =

⋂
ki∈Z+

V ki
i H{i}c

=
⊕

k∈Zn−1
+

V k
{i}c

( ⋂
ki∈Z+

V ki
i (N{i}c)

)
.

Since Vi|N{i}c is a shift by assumption, we obtain
⋂

ki∈Z+
V ki
i H = 0, which completes the proof

of the proposition. �

Now we turn to twisted isometries. Let V = (V1, . . . , Vn) be a twisted isometry. Recall
from Definition 4.1 the A-weak wandering subspace for V is given by

EA =
⋂
i∈A

⋂
B⊆{i}c

⋂
k∈Z|B|+

kerV ∗i V
k
B ,

for all nonempty A ⊆ In, and E∅ = H. Also recall from Definition 4.7 that the A-wandering
subspace for V is given by

WA =
⋂

l∈Zn−|A|
+

V l
In\AEA (A ⊆ In).

Assume for a moment that V is doubly twisted. Fix i ∈ A. Let B ⊆ {i}c and k ∈ Z|B|+ . Since
i /∈ B and V is doubly twisted, by Lemma 4.3, there exists a monomial η such that

V ∗i V
k
B = (η(U)V k

B)V ∗i .
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Since η(U)V k
B is an isometry, it follows that EA =

⋂
i∈A kerV ∗i = NA, and hence

(5.2) WA =
⋂

l∈Zn−|A|
+

V l
In\ANA (A ⊆ In),

the wandering subspace of doubly twisted isometries (see Theorem 3.7). In view of this
observation and Proposition 5.4, we are now in a position to define a weaker version of shift
that fits appropriately in orthogonal decompositions of twisted isometries.

Definition 5.5 (Twisted weak shift). A twisted isometry V = (V1, . . . , Vn) is said to be a
twisted weak shift if

(1) Vi|E{i}c is a shift for all i ∈ In, and

(2) VjVk|E{j,k}c is a shift for all j, k ∈ In and j 6= k.

Lemma 4.6 ensures that the above definition is consistent. Moreover, in the case of pairs
of commuting isometries, the above definition coincides with Popovici’s weak bi-shift.

6. Orthogonal decompositions of twisted isometries

In this section, we prove that a twisted isometry V = (V1, . . . , Vn) admits orthogonal
decompositions in the sense of Definition 1.2. Moreover, we prove that V |HIn

is a twisted
weak shift. For the case of commuting pairs of isometries, our result recovers the Popovici
decomposition. First, we prove that V indeed admits an orthogonal decomposition. Recall
that the A-wandering subspace for V is defined by (see Definition 4.7)

WA =
⋂

l∈Zn−|A|
+

V l
In\AEA (A ⊆ In),

where (see Definition 4.1) E∅ = H and

EA :=
⋂
i∈A

⋂
B⊆{i}c

⋂
k∈Z|B|+

(
kerV ∗i V

k
B

)
,

for all A ⊆ In such that A 6= ∅.

Proposition 6.1. Let V = (V1, . . . , Vn) be a twisted isometry. For each A $ In, define

HV,A :=
⊕

k∈Z|A|+

V k
AWA.

Then the following holds:

(1) HV,A reduces Vi for all i ∈ In.
(2) Vi|HV,A

is a shift for all i ∈ A.
(3) Vi|HV,A

is a unitary for all i /∈ A.
(4) The n-tuple V |HV,A

on HV,A is doubly twisted.

Moreover, HV,A is maximal, that is, if a closed subspace KV,A ⊆ H satisfies the above four
conditions, then KV,A ⊆ HV,A.
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Proof. Suppose A = ∅. Then HV,∅ =
⋂

k∈Zn
+
V kH. By part (3) of Lemma 4.8, for each i ∈ In,

we have ViHV,∅ = HV,∅ and hence V ∗i HV,∅ = HV,∅. Therefore, HV,∅ reduces Vi and Vi|HV,∅ is
a unitary for all i ∈ In. Next, suppose A( 6= ∅) is a proper subset of In. Fix i ∈ A. For each

k ∈ Z|A|+ , there exists a monomial ηk such that ViV
k
A = V k

AViηk(U) (see Lemma 4.3). By part
(2) of Lemma 4.8, we know that ηk(U)WA =WA. Therefore

ViHV,A = Vi

( ⊕
k∈Z|A|+

V k
AWA

)
=
⊕

k∈Z|A|+

V k+ei
A

(
ηk(U)WA

)
=
⊕

k∈Z|A|+

V k+ei
A WA,

and hence ViHV,A ⊆ HV,A. Now we prove that V ∗i HV,A ⊆ HV,A. Fix k ∈ Z|A|+ . If ki = 0, then,
V ∗i V

k
A (ξ) = 0, as ξ ∈ WA ⊆ EA. If ki > 0, then by Lemma 4.3, there exist monomials η1 and

η2 such that

V ∗i V
k
A (ξ) = V ∗i V

ki
i V k−kiei

A η1(U
∗)(ξ)

= V ki−1
i V k−kiei

A η1(U
∗)(ξ) = V k−ei

A η2(U)η1(U
∗)(ξ).

Again, by part (2) of Lemma 4.8, η2(U)η1(U
∗)(ξ) ∈ WA. This implies HV,A reduces Vi for all

i ∈ A. If i /∈ A, then part (3) of Lemma 4.8 yields ViHV,A = HV,A, which completes the proof
of (1).
Next, for each i ∈ In, we set Ṽi := Vi|HV,A

and Ṽ := V |HV,A
. Clearly, Ṽi is a shift for all i ∈ A

and unitary for all i /∈ A. This proves (2) and (3). To check (4), we set

Ũij := Uij|HV,A
(i 6= j).

Clearly, ṼiṼj = ŨijṼjṼi for all i 6= j. Fix i 6= j in In. If any one of Ṽi and Ṽj is unitary,

then evidently Ṽi
∗
Ṽj = Ũij

∗
ṼjṼi

∗
. Suppose now that both Ṽi and Ṽj are shifts. Of course,

in this case i, j ∈ A. Let V k
A (ξ) ∈ HV,A for some k ∈ Z|A|+ and ξ ∈ WA. If ki = 0, then as

ξ ∈ WA ⊆ EA, it follows that

Ṽ ∗i Ṽj
(
V k
Aξ
)

= 0 = ṼjṼ
∗
i

(
V k
Aξ
)
.

If ki > 0 and i ≤ j, then by Lemma 4.3, there exist monomials η1, η2, and η3 such that

Ṽ ∗i Ṽj
(
V k
Aξ
)

= V ∗i V
k+ej
A η1(U)ξ

= V ∗i V
ki
i V

k−kiei+ej
A η2(U

∗)η1(U)ξ

= V
k−ei+ej
A η3(U)η2(U

∗)η1(U)ξ,
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and

ṼjṼ
∗
i

(
V k
Aξ
)

= VjV
∗
i V

k
Aξ

= VjV
∗
i V

ki
i V k−kiei

A η2(U
∗)ξ

= VjV
k−ei
A η3(U)η2(U

∗)ξ

= V
k−ei+ej
A (U∗ji)η1(U)η3(U)η2(U

∗)ξ

= U∗jiV
∗
i VjV

k
Aξ

= Ũ∗jiṼ
∗
i Ṽj

(
V k
A (ξ)

)
,

where the last but one equality follows from the fact that VjV
k
A = V

k+ej
A η1(U), and

VjV
k−ei
A = V

k−ei+ej
A (U∗ji)η1(U),

whenever i < j. Similarly, for i > j, it follows that Ṽ ∗i Ṽj = Ũ∗ijṼjṼ
∗
i , which proves that V |HV,A

is doubly twisted corresponding to the twist {Ũij}i<j.
To prove the maximality of HV,A, consider a closed subspace KV,A ⊆ H satisfying all the four
conditions. Applying Theorem 3.7 to the doubly twisted isometry V |KV,A

on KV,A, we have

KV,A =
⊕

k∈Z|B|+

V k
A

( ⋂
l∈Zn−|A|

+

V l
In\A

(⋂
i∈A

kerV ∗i
⋂
KV,A

))
.

Let i ∈ A, B ⊆ {i}c, and suppose x ∈ (∩i∈A kerV ∗i )∩KV,A. Since V |KV,A
is doubly twisted, it

follows that V ∗i V
k
Bx = 0, and hence x ∈ EA. Therefore, if h ∈ KV,A, then for any l ∈ Z|B|+ and

B ⊆ Ac, we can write

h =
∑

k∈Z|B|+

V k
A (V l

BxB),

for some xB ∈ (∩i∈A kerV ∗i ) ∩ KV,A. Since xB ∈ EA, it follows that h ∈ HV,A, which proves
that HV,A is maximal and completes the proof of the proposition. �

We are finally ready for orthogonal decompositions of twisted isometries.

Theorem 6.2. Let V = (V1, . . . , Vn) be a twisted isometry on H. Then there is a unique
orthogonal decomposition

H =
⊕
A⊆In

HV,A,

where

(1) HV,A reduces V for all A ⊆ In.
(2) HV,A is maximal for all A $ In in the sense that Vi|HV,A

is a shift if i ∈ A and Vj|HV,A

is a unitary if j ∈ Ac.
(3) V |HV,In

is a twisted weak shift.

Proof. For A $ In, define HV,A as in Proposition 6.1 and set HV,In := H	
⊕

A$In
HV,A. Then

(1) and (2) follow from Proposition 6.1. For the last part we need to prove that
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(a) Vi|E{i}c∩HV,In
is a shift for all i ∈ In, and

(b) VjVk|E{j,k}c∩HV,In
is a shift for all j 6= k.

To this end, fix i, j, k ∈ In. Let {i} = In \ A and {j, k} = In \ B. Then by the definition of
HV,A and HV,B (see Proposition 6.1), we have

HV,A =
⊕

k∈Z|A|+

V k
A

( ⋂
m∈Z+

V m
i E{i}c

)
,

and
HV,B =

⊕
k∈Z|B|+

V k
B

( ⋂
l∈Z2

+

V l
{j,k}E{j,k}c

)
.

Since HV,In ⊥ HV,C for all C ( In, in particular, we have

HV,In

⋂( ⋂
m∈Z+

V m
i E{i}c

)
= {0} = HV,In

⋂(⋂
l∈Z2

+

V l
{j,k}E{j,k}c

)
,

that is, the unitary parts of Vi|E{i}c∩HV,In
and VjVk|E{j,k}c∩HV,In

are trivial. This proves that

V |HV,In
is a twisted weak shift. �

Clearly, in the case of commuting pairs of isometries, our result recovers the Popovici
decomposition. It is also worth noting that the extension of Popovici decomposition from
pairs of isometries to n-tuples of commuting isometries, n > 3, appears to be somewhat less
obvious. For instance, the choice of wandering subspaces and the weak shift counterpart for
n-tuples of isometries does not directly follow from the case of pairs of isometries.
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